
Voltage Transducer LV 200-AW/2/1600

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 1600 \text{ V}$

Electrical data

$oldsymbol{V}_{ extsf{PN}} \ oldsymbol{V}_{ extsf{P}} \ oldsymbol{R}_{ extsf{M}}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Measuring resistance		1600 0 ± 2400 $\mathbf{R}_{Mmin} \mathbf{R}_{Mmax}$		V V	
	with ± 15 V	@ ± 1600 V _{max}	0	120	Ω	
		@ $\pm 2400 V_{max}$	0	60	Ω	
	with ± 24 V	@ $\pm 1600 V_{max}$	60	220	Ω	
		@ ± 2400 V _{max}	60	110	Ω	
I _{SN}	Secondary nominal r.m.s. current		80		mΑ	
K _N	Conversion ratio		1600 V	/ 80 mA		
v _c	Supply voltage (± 5 %)		± 15	24	V	
I _c	Current consumption			$30(@\pm 24V)+I_{S}$ mA		
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6 ¹⁾	· ·	kV	
-			1 ²⁾		kV	
\mathbf{V}_{e}	R.m.s. voltage for partial discharges extinction $@$ 50 pC				kV	

Accuracy - Dynamic performance data

X _G	Overall Accuracy @ V_{PN} , $T_A = 25^{\circ}C$		± 1.0		%
$\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$	Linearity		< 0.1		%
			Тур	Max	
I _o	Offset current @ $I_p = 0$, $T_A = 25$ °C	- 25°C + 70°C		± 0.3	mΑ
I _{OT}	Thermal drift of I _o	- 25°C + 70°C	± 0.3	± 0.6	mΑ
$\mathbf{t}_{_{\mathrm{r}}}$	Response time @ 90 % of $\mathbf{V}_{\mathrm{P\ max}}$		120		μs

General data

\mathbf{T}_{A}	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	40000 : 2500	
Р	Total primary power loss	8	W
$R_{_1}$	Primary resistance @ T _A = 25°C	320	$k\Omega$
$\mathbf{R}_{\mathrm{s}}^{'}$	Secondary coil resistance @ T _A = 70°C	40	Ω
m	Mass	2	kg
	Standards 3)	EN 50178	

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Accessible electronic circuit
- Shield between primary and secondary circuit
- Primary resistor R₁ incorporated into the housing.

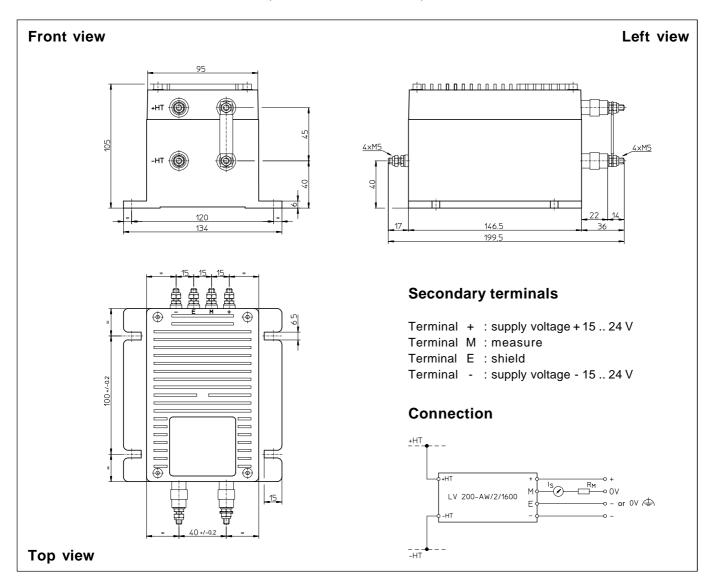
Advantages

- Good accuracy
- Very good linearity
- · Low thermal drift
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

Notes: 1) Between primary and secondary + shield


2) Between secondary and shield

3) A list of corresponding tests is available

980710/3

Dimensions LV 200-AW/2/1600 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Fastening torque
- ± 0.5 mm 4 holes Ø 6.5 mm M5 threaded studs M5 threaded studs 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \bullet ${\bf I}_{\rm S}$ is positive when ${\bf V}_{\rm P}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.